Bridge genus and braid genus of lens space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Braid Ordering and Knot Genus

The genus of knots is a one of the fundamental invariant and can be seen as a complexity of knots. In this note, we give a lower bound of genus using Dehornoy floor, which is a measure of complexity of braids in terms of braid ordering.

متن کامل

Small genus knots in lens spaces have small bridge number

In a lens space X of order r a knot K representing an element of the fundamental group π1X ∼= Z/rZ of order s ≤ r contains a connected orientable surface S properly embedded in its exterior X − N(K) such that ∂S intersects the meridian of K minimally s times. Assume S has just one boundary component. Let g be the minimal genus of such surfaces for K , and assume s ≥ 4g − 1. Then with respect to...

متن کامل

Non-simple genus minimizers in lens spaces

Given a one-dimensional homology class in a lens space, a question related to the Berge conjecture on lens space surgeries is to determine all knots realizing the minimal rational genus of all knots in this homology class. It is known that simple knots are rational genus minimizers. In this paper, we construct many non-simple genus minimizers. This negatively answers a question of Rasmussen.

متن کامل

Genus one 1-bridge knots and Dunwoody manifolds

In this paper we show that all 3-manifolds of a family introduced by M. J. Dunwoody are cyclic coverings of lens spaces (eventually S), branched over genus one 1-bridge knots. As a consequence, we give a positive answer to the Dunwoody conjecture that all the elements of a wide subclass are cyclic coverings of S branched over a knot. Moreover, we show that all branched cyclic coverings of a 2-b...

متن کامل

VANKYA, A NEW GENUS OF SMUT FUNGI

Study of smut fungi on Liliaceae resulted to propose a new genus and three new combinations: Vankya Ershad, type V. ornithogali (Schmidt et Kunze) Ershad, based on Uredo ornithogali Schmidt et Kunze, V. heufleri (Fuckel) Ershad, based on Ustilago heufleri Fuckel, and V. vaillantii (L.-R. et C. Tulasne) Ershad, based on Ustilago vaillantii L.-R. et C. Tulasne.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2015

ISSN: 0166-8641

DOI: 10.1016/j.topol.2015.05.047